Function reference
-
wbm()
- Panel regression models fit via multilevel modeling
-
wbgee()
- Panel regression models fit with GEE
-
fdm()
- Estimate first differences models using GLS
-
asym()
- Estimate asymmetric effects models using first differences
-
asym_gee()
- Asymmetric effects models fit with GEE
-
wbm_stan()
- Bayesian estimation of within-between models
-
panel_data()
as_pdata.frame()
as_panel_data()
as_panel()
- Create panel data frames
-
widen_panel()
- Convert long panel data to wide format
-
long_panel()
- Convert wide panels to long format
-
summary(<panel_data>)
- Summarize panel data frames
-
complete_data()
- Filter out entities with too few observations
-
model_frame()
- Make model frames for panel_data objects
-
unpanel()
- Convert panel_data to regular data frame
-
is_panel()
- Check if object is panel_data
-
tidy(<wbm>)
glance(<wbm>)
glance(<summ.wbm>)
tidy(<summ.wbm>)
- Tidy methods for
wbm
models
-
tidy(<asym_gee>)
tidy(<wbgee>)
glance(<wbgee>)
- Tidy methods for
wbgee
models
-
tidy(<asym>)
tidy(<fdm>)
glance(<fdm>)
- Tidy methods for
fdm
andasym
models
-
predict(<wbm>)
simulate(<wbm>)
- Predictions and simulations from within-between models
-
predict(<wbgee>)
- Predictions and simulations from within-between GEE models
-
formula(<wbm>)
- Retrieve model formulas from
wbm
objects
-
nobs(<wbm>)
- Number of observations used in
wbm
models
-
wbm-class
- Within-Between Model (
wbm
) class
-
are_varying()
- Check if variables are constant or variable over time.
-
make_wb_data()
- Prepare data for within-between modeling
-
make_diff_data()
- Generate differenced and asymmetric effects data
-
get_wave()
get_id()
get_periods()
- Retrieve panel_data metadata
-
line_plot()
- Plot trends in longitudinal variables
-
heise()
- Estimate Heise stability and reliability coefficients
-
WageData
- Earnings data from the Panel Study of Income Dynamics
-
teen_poverty
- National Longitudinal Survey of Youth teenage women poverty data
-
nlsy
- National Longitudinal Survey of Youth data