Skip to contents

Regression models

wbm()
Panel regression models fit via multilevel modeling
wbgee()
Panel regression models fit with GEE
fdm()
Estimate first differences models using GLS
asym()
Estimate asymmetric effects models using first differences
asym_gee()
Asymmetric effects models fit with GEE
wbm_stan()
Bayesian estimation of within-between models

Panel data wrangling

panel_data() as_pdata.frame() as_panel_data() as_panel()
Create panel data frames
widen_panel()
Convert long panel data to wide format
long_panel()
Convert wide panels to long format
summary(<panel_data>)
Summarize panel data frames
complete_data()
Filter out entities with too few observations
model_frame()
Make model frames for panel_data objects
unpanel()
Convert panel_data to regular data frame
is_panel()
Check if object is panel_data

Model utilities

tidy(<wbm>) glance(<wbm>) glance(<summ.wbm>) tidy(<summ.wbm>)
Tidy methods for wbm models
tidy(<asym_gee>) tidy(<wbgee>) glance(<wbgee>)
Tidy methods for wbgee models
tidy(<asym>) tidy(<fdm>) glance(<fdm>)
Tidy methods for fdm and asym models
predict(<wbm>) simulate(<wbm>)
Predictions and simulations from within-between models
predict(<wbgee>)
Predictions and simulations from within-between GEE models
formula(<wbm>)
Retrieve model formulas from wbm objects
nobs(<wbm>)
Number of observations used in wbm models
wbm-class
Within-Between Model (wbm) class

Other utilities

are_varying()
Check if variables are constant or variable over time.
make_wb_data()
Prepare data for within-between modeling
make_diff_data()
Generate differenced and asymmetric effects data
get_wave() get_id() get_periods()
Retrieve panel_data metadata
line_plot()
Plot trends in longitudinal variables
heise()
Estimate Heise stability and reliability coefficients

Datasets

WageData
Earnings data from the Panel Study of Income Dynamics
teen_poverty
National Longitudinal Survey of Youth teenage women poverty data
nlsy
National Longitudinal Survey of Youth data