Function reference
-
wbm() - Panel regression models fit via multilevel modeling
-
wbgee() - Panel regression models fit with GEE
-
fdm() - Estimate first differences models using GLS
-
asym() - Estimate asymmetric effects models using first differences
-
asym_gee() - Asymmetric effects models fit with GEE
-
wbm_stan() - Bayesian estimation of within-between models
-
panel_data()as_pdata.frame()as_panel_data()as_panel() - Create panel data frames
-
widen_panel() - Convert long panel data to wide format
-
long_panel() - Convert wide panels to long format
-
summary(<panel_data>) - Summarize panel data frames
-
complete_data() - Filter out entities with too few observations
-
model_frame() - Make model frames for panel_data objects
-
unpanel() - Convert panel_data to regular data frame
-
is_panel() - Check if object is panel_data
-
tidy(<wbm>)glance(<wbm>)glance(<summ.wbm>)tidy(<summ.wbm>) - Tidy methods for
wbmmodels
-
tidy(<asym_gee>)tidy(<wbgee>)glance(<wbgee>) - Tidy methods for
wbgeemodels
-
tidy(<asym>)tidy(<fdm>)glance(<fdm>) - Tidy methods for
fdmandasymmodels
-
predict(<wbm>)simulate(<wbm>) - Predictions and simulations from within-between models
-
predict(<wbgee>) - Predictions and simulations from within-between GEE models
-
formula(<wbm>) - Retrieve model formulas from
wbmobjects
-
nobs(<wbm>) - Number of observations used in
wbmmodels
-
wbm-class - Within-Between Model (
wbm) class
-
are_varying() - Check if variables are constant or variable over time.
-
make_wb_data() - Prepare data for within-between modeling
-
make_diff_data() - Generate differenced and asymmetric effects data
-
get_wave()get_id()get_periods() - Retrieve panel_data metadata
-
line_plot() - Plot trends in longitudinal variables
-
heise() - Estimate Heise stability and reliability coefficients
-
WageData - Earnings data from the Panel Study of Income Dynamics
-
teen_poverty - National Longitudinal Survey of Youth teenage women poverty data
-
nlsy - National Longitudinal Survey of Youth data